CountryData
Technologies for Data

!'_ Exchange

Introduction to XML



i What is XML?

= EXtensible Markup Language

= Format is similar to HTML, but XML deals
with data structures, while HTML is about
presentation

= Open standard

= Recommended by World Wide Web
Consortium (W3C)



i XML document: an example

<?xml version="1.0" ?>
<books>
<book bookID="BU1032" price="19.99">
<title>The Busy Executive's Database Guide</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>
<author authorID="A409-56-7008">Bennet, Abraham</author>
</authors>
</book>
<book bookID="BU2075" price="2.99">
<title>You Can Combat Computer Stress!</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>
</authors>
</book>
</books>



i Markup languages

= Text-based languages, where
instructions and/or descriptions are
inserted into data

= Both machine and human-readable



i XML, HTML, and SGML

= SGML (Standard Generalized Markup
Language) is a broad specification for
creating markup documents —
essentially, a set of rules

= Has been in use since early 1980s

s Serves as a base for several other
markup languages



i HTML

= HyperText Markup Language, designed
around 1990 to support networked
hypertext documents and became the
foundation of World Wide Web

= An implementation of SGML, i.e. a
defined set of markup instructions
(tags) that browsers must understand
to display Web pages



i XML

= EXtensible Markup Language —
extensible because, like SGML, allows
users to define their own tags

= A simplified sub-set of SGML

s Stricter rules make it easier for humans
to read and machines to process

= XML is infrastructure, not a solution!



i HTML vs XML

= HTML defines a set of tags that are
used for presentation of hypertext
documents. You use <B> to display
text in bold font, <IMG> to insert an
image, etc.

= XML has no predefined tags. You create
your own tags and give them your own
meaning.



HTML vs XML

<HTML> HTML tags

<H1>Hypertext Markup Language</H2>
<P>
You <B>must<B> use HTML <I>tags</I> for presentation of text.
</P>
</HTML>

<?xml version= "1.0" ?> XML tags

<MyXmlIDocument>
<MyStatement>
In XML, you use your own tags and give them your own meaning.
</MyStatement>
</MyXmlIDocument>



i Multi-language compatibility

= XML documents are based on Unicode,
which supports all of the world’s written
alphabets




i Basis for other standards

= Concrete implementations of XML
= RSS (Really Simple Syndication)
= MathML (Mathematical Markup Language)
= CML (Chemical Markup Language)

= SDMX (Statistical Data and Metadata
Exchange)



i XML tags

= Must start with a letter (a-z, A-Z) or an
underscore (_)

= Must contain at least one letter

= Can contain letters, digits, hyphens,
underscores, and periods




Commonly used naming
i conventions

= TimeSeries
« timeSeries
= time-series
=« time_series
= It is not mandatory, but highly

recommended, to use a consistent
naming convention



XML components
I Declaration

<?xml version="1.0" ?> i 3
<books> — Root Entity

<book bookID="BU1032" price="19.99"

Element <title>The Busy Executive&quot;s Database Guide</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>

<author authorID="A409-56-7008">Bennet, Abraham</author> Attribute
</authors>
</book>

<book bookID="PS1372" price="21.59">
<title>Computer Phobic AND Non-Phobic Individuals: Behavior Variations</title>
<authors>
<author authorID="A724-80-9391">MacFeather, Stearns</author>
<author authorID="A756-30-7391">Karsen, Livia</author>
</authors>
</book>
</books>



i Declaration

= Optional but recommended

= Specifies XML version (currently 1.0)
and encoding

= Encoding may vary but utf-8 is most
commonly used



i Root

= Also known as root element and
document element

= Valid XML document must contain a
single root, which encloses all other
elements

= Should, but does not have to, have a
unique name



i Element

= A unit of XML data, delimited by tags”
= Can contain text

= Can contain other elements

= Can contain attributes

= Can be empty




i Attribute

= A qualifier on an XML tag”

s Provides additional information about
elements

= Must be unique in every element:
cannot be repeated

= Single or double quote can be used to
enclose value




i Entity

= An “escape sequence”, i.e. a sequence
of characters used to represent
characters that are illegal in content

» &lt; - less than (<)

« &gt; - greater than (>)

= &amp; - ampersand (&)

« &quot; - quotation mark (%)
« &apos; - apostrophe (V)



i Element content

<book>
<title>XML Databases< /title>
<price>49.99</price>
</book>

= The book element only contains other
elements



i Simple content

<title>XML Databases< /title>
<price>49.99</price>

= [he title element contains text
= The price element contains a number



i Mixed content

<authors>
The list of authors includes
<author>Ann Dull</author>
and <author>Michael O'Leary</author>
</authors>

= The Authors element contains both other
elements and text

= Rarely used in data structures



i Empty content

<page-break/>
<page-break></page-break>
<book price="49.99"/>

= These elements are empty: they carry
no content between the opening and
closing tags.



i Elements vs Attributes

<book title="XML Databases”
price="49.99"/>

<book>
<title>XML Databases< /title>
<price>49.99</price>
</book>



i Elements vs Attributes (2)

s Data structures can be element-centric
or attribute-centric.

= T he choice of data model rests with the
designer.

= Typically, elements and attributes are
both used in the same document,
although it is possible to only use
elements.



i Elements vs Attributes (3)

= Elements are best used for information
that

=« Can be repeated
= Can be grouped
= Can be extended




i Elements vs Attributes (4)

s Attributes are best used for information
that

= IS a simple property of the object: consists
of a single value, such as ID or price

= IS unique for the object: cannot be
repeated




i PCDATA

= Parseable Character Data: any text that
is not markup, including entities

= Elements containing data are declared
as PCDATA

= Numerical data are typically
represented as text for compatibility
and readability




i CDATA

= CDATA (character data) sections are not
parsed and can therefore contain reserved
XML characters

<condition>x <= 5</condition> illegal
<condition>x &lt;= 5</condition> OK
<condition>

<I[CDATA[Xx <= 5]]>
< /condition> OK




i Elements vs Attributes

= Element-based structures are more
verbose and can be more difficult to
read due to deeper nesting.

= Simple properties represented as
attributes mitigate these issues.

= Complex properties, which themselves
are objects, should (and often have to)
be represented as elements.



i Well-formed XML

= A "well-formed” XML document is a
document that conforms to syntax
rules:
= XML documents must have a root element
= Elements and attributes must have valid nhames
= Elements must be properly terminated
= Tags are case sensitive
= Elements must be properly nested
= Attribute values must always be quoted




i Well-formed XML (2)

= | he rules are stricter than HTML
= A closing tag is always required

= Strict rules mean faster validation and
processing

= Generally, XML documents that are not
well-formed cannot be processed in any
way




i Name conflicts

= When processing XML documents,
especially combining different

documents, name conflic

'S may occur

= The same element or attribute may
have one meaning in one document,
but a different meaning in the other

document



Name conflict: an example

<books>
<book price="19.99">
<title>The Busy Executive&quot;s Database Guide</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>
<author authorID="A409-56-7008">Bennet, Abraham</author>
</authors>
</book>
</books>

<employee>
<title>Programmer Analyst</title>
<name>Smith, John</name>
</employee>



i XML namespaces

= Provide a mechanism to avoid name
conflicts

= Let you group elements and attributes
by giving them a unique group identifier

= Elements and attributes must be unique
within @ namespace




i Namespace identifiers

= XML namespace is identified by a URI
(Uniform Resource Identifier)

= Namespace declarations often resemble
Web addresses because Web addresses
are unique

= However, they do not have to be either
valid addresses or follow the Web
address syntax



i Namespace declarations

= Namespaces are declared using the
xmins attribute.

= Used on an element, this declaration
applies to the element and its children.

= A prefix may be specified as a shortcut
to the namespaces.



Namespaces: an example

<books xmins="http://www.mypublisher.com/book_namespace">
<book price="19.99">
<title>The Busy Executive&quot;s Database Guide</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>
<author authorID="A409-56-7008">Bennet, Abraham</author>
</authors>
</book>
</books>

<emp:employee xmins:emp="urn:mypublisher:employee_namespace">
<emp:title>Programmer Analyst</emp:title>
<emp:name>Smith, John</emp:name>

</emp:employee>



i Document Type Definition

= A Document Type Definition (DTD)
defines the legal building blocks of an
XML document. It defines the document
structure with a list of legal elements
and attributes.”

= Originally designed for SGML.



i DTD: an example

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE books[
<IELEMENT books (book*)>
<IELEMENT book (title, authors)>
<!ELEMENT title (#PCDATA)>
<IELEMENT authors (author+)>
<!ELEMENT author (#PCDATA)>
<IATTLIST book price CDATA #IMPLIED>
<IATTLIST author authorID CDATA #REQUIRED>]>
<books>
<book price="19.99">
<title>The Busy Executive&quot;s Database Guide</title>
<authors>
<author authorID="A213-46-8915">Blue, Marjorie</author>
<author authorID="A409-56-7008">Bennet, Abraham</author>
</authors>
</book>
</books>



i Valid or well-formed?

= A well-formed XML document is said
to be valid if it conforms to its DTD or
schema.

= A well-formed document may not
conform to its DTD, in which case it is
invalid.



i Disadvantages of DTD

= Uses a custom non-XML syntax

= No support for certain XML features
= Namespaces are not supported

= No data types
= Not extensible
= Difficult to build or read




i XML schema

= An XML-based alternative to DTD

= Like DTD, describes the structure of an
XML document




XML schema: an example

<xsd:schema xmins:xsd="http: www.w3.org/2001/XMLSchema" targetNamespace="http://www.mypublisher.com/book_namespace"
xmins="http://www.mypublisher.com/book_namespace" elementFormDefault="qualified">

<xsd:element name="books">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="book" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title" minOccurs="1" maxOccurs="1" type="xsd:string"/>
<xsd:element name="authors" minOccurs="1" maxOccurs="1">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="author" minOccurs="1" maxOccurs="unbounded">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="authorID" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="price" type="xsd:int" use="optional"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>




i Simple element declaration

<xsd:element name="author” type="xsd:string” />

= Defines element that contains PCData, and
the type of PCData.

= Most commonly used types include:
= Xsd:string

xsd:decimal

xsd:integer

xsd:boolean

xsd:date

xsd:time



i Attribute declaration

<xsd:attribute name="price" type="xsd:int" use="optional"/>

s Attributes are defined on elements

= Use declares that the attribute:
= required — must be present
= optional — may or may not be present
= prohibited —must not be present




i Facets

= A way to restrict legal values on a
simple type

= A variety of restrictions are supported,
e.g.
= Enumeration

= Range

= Length

= Pattern, etc




i Facets: enumeration

<xsd:element name="Gender">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

= This declares an element named
Gender, with two possible values: Male
and Female.



i Facets: range

<xsd:element name="Age" >
<xsd:simpleType>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="150"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

= This declares an element named Age,
with valid integer values from 0 to 150.
minExclusive and maxExclusive
facets are also supported.



i Facets: length

<xsd:element name="LastName" >
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="2"/>
<xsd:maxLength value="30"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

= T his declares an element named
LastName, with the minimum length
of 2 characters and maximum length 30
characters.



i Facets: other constraints

=« WhiteSpace - specifies how white space
IS handled

= totalDigits — restricts the maximum
number of digits in a value

= fractionDigits — restricts the maximum
number of digits after the decimal point

= pattern — restricts the value based on
regular expression matching




i Type declarations

= Instead of specifying types directly on
the elements or attributes, it is possible
to declare a type and then reuse it on
multiple element/attribute declarations.



i Type declaration: example

<xsd:simpleType name="AgeType">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="150"/>
< /xsd:restriction>
</xsd:simpleType>

<xsd:element name="HusbandAge" type="AgeType"/>
<xsd:element name="WifeAge" type="AgeType"/>



i Simple and complex types

= Simple types can be used to define:
= Attributes

= Simple elements, which cannot have
attributes and cannot have element
content

= Complex types define elements that
may include attributes and/or other
elements.



Complex types: element

i content

= Three types of declarations can be used
to define element content:

= Xsd:choice - defines a list of elements,
one of which must appear

= Xsd:all - defines a list of elements, any of
which may or may not appear once, in any
order

= Xsd:sequence - defines a list of elements
that must appear in the order specified




i xsd:choice

<xsd:complexType name="AddressType">
<xsd:choice>
<xsd:element name="LocalAddress" type="LocalAddressType"/>

<xsd:element name="InternationalAddress"
type="InternationalAddressType"/>

</xsd:choice>
</xsd:complexType>

= Now, we can declare an element of
type AddressType, which must include
either an element named
LocalAddress, or an element
InternationalAddress.



i xsd:all

<xsd:complexType name="AddressListType">
<xsd:all>

<xsd:element name="HomeAddress" type="AddressType"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="0fficeAddress" type="AddressType"
minOccurs="0" maxOccurs="1"/>

</xsd:all>
</xsd:complexType>

= Now, we can declare an element of
type AddressListType, which must
include an element HomeAddress and
may include OfficeAddress.



i xsd:sequence

<xsd:complexType name="AuthorsListType">
<xsd:sequence>
<xsd:element name="author" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

= Now, we can declare an element of
type AuthorsListType, which must
contain at least one element named
author.



XML Schema: with types

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.mypublisher.com/book_namespace"
xmins="http://www.mypublisher.com/book_namespace" elementFormDefault="qualified">

<xsd:complexType name="bookListType">
<xsd:sequence>
<xsd:element name="book" type="BookType" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="BookType">
<xsd:sequence>
<xsd:element name="title" type="xsd:string" maxOccurs="1"/>
<xsd:element name="authors" type="AuthorListType" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="price" type="xsd:float" use="optional"/>
</xsd:complexType>
<xsd:complexType name="AuthorListType">
<xsd:sequence>
<xsd:element name="author" maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="authorID" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="books" type="bookListType"/>
</xsd:schema>



i XSL

EXtensible Stylesheet Language

An implementation of XML: a defined set of
tags that is used to transform XML
documents into other representations

The most common mechanism for converting
XML from one form to another, as well as into
HTML and other representations.

Conversions are carried out by software
known as XSL transformer.



XSL Transformations

XML
Document \
XSL Output
\/ Transformer "l Document
- /
Stylesheet Format of the output document: XML,

\/ HTML, XSL-FO, etc.



XSL stylesheet: an example

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="books">

<html>
<body>
<table border="1">
<tr>
<td><b>Title</b></td>
<td><b>Authors</b></td>
<td><b>Price</b></td>
</tr>
<xsl:for-each select="book">
<tr>
<td>
<xsl:value-of select="title"/>
</td>
<td>

<xsl:for-each select="authors/author">
<xsl:value-of select="."/>
<br/>
</xsl:for-each>
</td>
<td>
<xsl:value-of select="@price"/>
</td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>



